Region-Based Image Clustering and Retrieval Using Multiple Instance Learning

نویسندگان

  • Chengcui Zhang
  • Xin Chen
چکیده

Multiple Instance Learning (MIL) is a special kind of supervised learning problem that has been studied actively in recent years. We propose an approach based on One-Class Support Vector Machine (SVM) to solve MIL problem in the region-based Content Based Image Retrieval (CBIR). This is an area where a huge number of image regions are involved. For the sake of efficiency, we adopt a Genetic Algorithm based clustering method to reduce the search space. Relevance Feedback technique is incorporated to provide progressive guidance to the learning process. Performance is evaluated and the effectiveness of our retrieval algorithm is demonstrated in comparative studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

User Concept Pattern Discovery Using Relevance Feedback And Multiple Instance Learning For Content-Based Image Retrieval

Understanding and learning the subjective aspect of humans in Content-Based Image Retrieval has been an active research field during the past few years. However, how to effectively discover users’ concept patterns when there are multiple visual features existing in the retrieval system still remains a big issue. In this paper, we propose a multimedia data mining framework that incorporates Mult...

متن کامل

LMS -- A Long term knowledge-based multimedia retrieval system for region-based image databases

In knowledge-based systems, human interaction usually refers to “expert knowledge”. However, in a large system where no pre-defined knowledge from expert is available, we may learn from the users of the system, i.e. through users’ queries and their feedbacks on the query results. The Content-Based Image Retrieval (CBIR) system is a special kind of knowledge-based multimedia retrieval system. In...

متن کامل

Incorporating real-valued multiple instance learning into relevance feedback for image retrieval

This paper presents a content-based image retrieval (CBIR) system that incorporates real-valued Multiple Instance Learning (MIL) into the user relevance feedback (RF) to learn the user’s subjective visual concepts, especially where the user’s most interested region and how to map the local feature vector of that region to the high-level concept pattern of the user. RF provides a way to obtain t...

متن کامل

Region Selection based on Evidence Confidence for Localized Content-Based Image Retrieval

Over the past decade, multiple-instance learning (MIL) has been successfully utilized to model the localized content-based image retrieval (CBIR) problem, in which a bag corresponds to an image and an instance corresponds to a region in the image. However, existing feature representation schemes are not effective enough to describe the bags in MIL, which hinders the adaptation of sophisticated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005